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NUMERICAL MODELLING OF THE STABILITY OF LOADED SHELLS

OF REVOLUTION CONTAINING FLUID FLOWS

UDC 539.3S. A. Bochkarev and V. P. Matveenko

A mixed finite-element algorithm is proposed to study the dynamic behavior of loaded shells of rev-
olution containing a stationary or moving compressible fluid. The behavior of the fluid is described
by potential theory, whose equations are reduced to integral form using the Galerkin method. The
dynamics of the shell is analyzed with the use of the variational principle of possible displacements,
which includes the linearized Bernoulli equation for calculating the hydrodynamic pressure exerted
on the shell by the fluid. The solution of the problem reduces to the calculation and analysis of the
eigenvalues of the coupled system of equations. As an example, the effect of hydrostatic pressure
on the dynamic behavior of shells of revolution containing a moving fluid is studied under various
boundary conditions.
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Introduction. Fluid flow at a considerable velocity can lead to static (divergence) or dynamic (flutter)
instability of the pipe–fluid system. In turn, a static load [axial extension (compression) or hydrostatic (external)
pressure] can also result in static instability of an elastic thin-walled body. Therefore, the joint action of hydrody-
namic and static loads can have a stabilizing or destabilizing influence on the system considered, by increasing or
decreasing the critical velocities of the fluid flow.

In theoretical studies (analytical and numerical), an elastic pipe is modeled as a circular beam [1], a shell of
revolution [2–5] or a three-dimensional body [6]. The internal fluid flow is described using potential theory [2–5] or
Euler equations [6].

The finite-element method provides great capabilities for modeling the dynamic behavior of pipe–moving fluid
systems from a point of view of choosing possible tools for describing elastic bodies and fluid flows [4–6]. However,
there have been a few theoretical studies exploring the influence of static loads on the dynamic characteristics of
pipe–moving fluid systems. The influence of axial compression and hydrostatic pressure was considered in [5]. An
analytical expression for the pressure of a moving incompressible fluid was obtained with the framework of potential
theory using the method of separation of variables, and the characteristic parameters included in the expression
were determined from the Sanders shell equations written in the form of the Lamé equations. In [6], the influence
of hydrostatic pressure was studied using a finite-element algorithm in which a cylindrical shell is described by the
three-dimensional theory of elasticity and the hydrodynamic pressure is determined from the Euler equations with
dynamic boundary conditions taking into account the fluid flow.

In the present paper, a mixed finite-element algorithm is proposed to study the influence of a static load
on the dynamic characteristics of a pipe–moving fluid system. This algorithm integrates a system of equations for
the fluid obtained by applying the Galerkin method to the equations of potential theory and the shell equations
obtained using the principle of possible displacements. The preliminary stress state is determined by solving the
static problem.
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1. Formulation of the Problem. Equations of Motion for Shells of Revolution. We consider
an elastic shell of revolution of length L and thickness h with the smallest radius R. The shell contains an ideal
compressible fluid which flows at a velocity U . The shell is acted upon by hydrostatic fluid pressure p. It is necessary
to find the flow velocity at which the unperturbed shape of the previously loaded shell becomes unstable.

Using the classical shell theory based on the Kirchhoff–Love hypotheses, we can write the strain vector
components in the curvilinear coordinates (α1, α2, z) as follows [7]:

ε11 = E11 + zk11, ε22 = E22 + zk22, ε12 = E12 + zk12. (1)

Here

E11 = ε1 + (ε21 + ω2
1 + θ21)/2, E12 = ω1 + ω2 + ε1ω2 + ε2ω1 + θ1θ2,

k11 = k1 + ε1k1 + ω1τ, k12 = 2τ + τ(ε1 + ε2) + ω1k1 + ω2k2;
(2)

ε1 = u′ + ψ1v + r1w, ω1 = v′ + ψ1u, θ1 = w′ − r1u, k1 = θ′1 + ψ1θ2, τ = t1 + t2,

t1 = θ′2 + ψ1θ1, ( · )′ =
1
A1

∂ ( · )
∂α1

, r1 =
1
R1

(1 � 2), ψ1 = 0, ψ2 =
A′

2

A2
,

u, v, and w are the meridional, circumferential, and normal components of the displacement vector, θi are the
angles of rotation of the undeformed normal, Ri are the principal curvature radii, and Ai are Lamé parameters; the
notation 1 � 2 indicates the presence of equations and relations obtained from the previous ones by replacement
of subscript 1 by 2 and subscript 2 by 1.

The shell strain components (2) can be written in matrix form

ε = ε∗ + Ee/2. (3)

Here ε = {E11, E22, E12, k11, k22, k12}t, ε∗ = {ε1, ε2, ω1 + ω2, k1, k2, 2τ}t is the linear part of the strain, e =
{ε1, ε2, ω1, ω2, θ1, θ2, k1, k2, τ}t, and E is the matrix of linear factors.

The elastic relations can also be written in matrix form

T = {T11, T22, T12,M11,M22,M12}t = Dε. (4)

Here T is the force and moment vector and D is the stiffness matrix. The matrices E and D have the form

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1 0 ω1 0 θ1 0 0 0 0
0 ε2 0 ω2 0 θ2 0 0 0
ω2 ω1 ε2 ε1 θ2 θ1 0 0 0
k1 0 τ 0 0 0 ε1 0 ω1

0 k2 0 τ 0 0 0 ε2 ω2

τ τ k1 k2 0 0 ω1 ω2 ε1 + ε2

⎤
⎥⎥⎥⎥⎥⎥⎦
, D =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 0 b11 b12 0
a12 a22 0 b12 b22 0
0 0 a44 0 0 b44
b11 b12 0 c11 c12 0
b12 b22 0 c12 c22 0
0 0 b44 0 0 c44

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In the stiffens matrix D, the coefficients are defined as

(aij , bij , cij) =
∫

h

(1, z, z2)Bij dz (i, j = 1, 2, 4)

(Bij are the known coefficients included in Hooke’s law for an isotropic material).
For a mathematical formulation of the problem, we use the principle of possible displacements supplemented

with the work of inertia forces, which can be written in matrix form as∫

S

δεt T dS +
∫

V

δd t ρmd̈ dV −
∫

S

δd t P dS = 0. (5)

Here ε, T , d, and P are the vectors of the generalized strains, generalized forces and the moments, displacements,
and surface loads, respectively and ρm is the specific density of the shell material.

Let us consider the initial state of equilibrium determined by the displacement vector d0, the strain vector ε0,
etc. The quantities characterizing the states with small deviations from the state of equilibrium can be represented
as d = d0 + d1, etc. Then, in view of relations (3) and (4) and the assumptions of linearity of the initial equilibrium
state, the vectors of the strain, strain variations, forces, and moments are written as follows:
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ε = ε0∗ + ε1∗ + E0e1 + E1e1/2,

δε = δε1∗ + E0δe1 + E1δe1, T = T 0 + T 1 + T 2, (6)

T 0 = Dε0∗, T 1 = D(ε1∗ + E0e1), T 2 = DE1e1/2.

Substituting relations (6) into (5) subject to the initial condition, omitting terms of the third and fourth order
of smallness, and performing simple transformations, we obtain the equilibrium condition for a state close to the
initial state: ∫

S

δ(ε1∗)
tDε1∗ dS +

∫

V

δ(d1)t ρmd̈
1 dV −

∫

S

δ(d1)t P 1 dS +
∫

S

δ(e1)t σ0e
1 dS

+
∫

S

δ(ε1∗)
tDE0e1 dS +

∫

S

δ(e1)tDE0ε1∗ dS = 0. (7)

Here the matrix σ0, whose elements are found from the condition (E1)tDε0∗ = σ0e
1 (the vector ε0∗ is a solution of

the corresponding static problem), is written as

σ0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T11 0 0 T12 0 0 M11 0 M12

0 T22 T12 0 0 0 0 M22 M12

0 T12 T11 0 0 0 M12 0 M11

T12 0 0 T22 0 0 0 M12 M22

0 0 0 0 T11 T12 0 0 0
0 0 0 0 T12 T22 0 0 0

M11 0 M12 0 0 0 0 0 0
0 M22 0 M12 0 0 0 0 0

M12 M12 M11 M22 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the examples presented below, the last two integrals in (7) are not considered, which corresponds to the hypothesis
of a stressed undeformed state.

2. Equations of Motion for the Fluid and Numerical Implementation of the Problem. In the
case of potential flow, the motion of an ideal compressible fluid occupying volume Vf in the shell is described by
the wave equation, which, in cylindrical coordinates (r, θ, x), is written as follows [8]:

∇2φ =
∂2φ

∂r2
+

1
r2

∂2φ

∂θ2
+
∂2φ

∂x2
+

1
r

∂φ

∂r
=

1
c2

( ∂
∂t

+ U
∂

∂x

)2

φ (8)

(φ is the velocity perturbation potential and c is the sound velocity in the fluid). The fluid pressure Pf on an elastic
structure (Sσ = Sf ∩ Ss) is calculated by the linearized Bernoulli formula

Pf = p− ρf

(∂φ
∂t

+ U
∂φ

∂s

)
. (9)

Here ρf is the specific fluid density, s is the meridional coordinate of the shell, and Sf and Ss are the areas of the
surfaces that bound the volumes of the fluid and shell, respectively. At the shell–fluid interface Sσ, we specify the
nonpenetration condition

∂φ

∂n
=
∂w

∂t
+ U

∂w

∂s
, (10)

where n is the normal to the surface. At the entrance to and exit from the shell, the velocity perturbation potential
obeys the boundary conditions

x = 0: φ = 0, x = L:
∂φ

∂x
= 0. (11)

Applying the Galerkin method to the partial differential equation for the velocity perturbation potential (8)
with boundary conditions (10) and (11), we obtain the integral relation [9]
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mφ∑
l=1

[ ∫

Vf

(∂Fl

∂r

∂Fk

∂r
+

1
r2

∂Fl

∂θ

∂Fk

∂θ
+ (1 − M2)

∂Fl

∂x

∂Fk

∂x

)
dV

]
φal

+
mφ∑
l=1

( ∫

Vf

2U
c2

∂Fl

∂x
Fk dV

)
φ̇al +

mφ∑
l=1

(∫

Vf

1
c2
FlFk dV

)
φ̈al

−
ms∑
i=1

( ∫

Sσ

Nw
i Fk dS

)
ẇai −

ms∑
i=1

(∫

Sσ

U
∂Nw

i

∂s
FkdS

)
wai = 0, k = 1,mφ.

Here mφ and ms are the numbers of finite elements in the regions occupied by the fluid (Vf ) and the shell (Vs),
respectively, φal and wai are the nodal values for the fluid and shells, respectively, M = U/c is the Mach number, F
and Nw

i are shape functions for the velocity perturbation potential and the normal component of the displacement
vector.

The resulting equation can be written in matrix form

(Kφ −Ac
φ)φa +Mφφ̈a − Cc

φφ̇a − Cφwa −Aφwa = 0, (12)

where

Kφ =
∑
mφ

∫

Vf

(∂F t

∂r

∂F

∂r
+

1
r2

∂F t

∂θ

∂F

∂θ
+
∂F t

∂x

∂F

∂x

)
dV, Mφ =

∑
mφ

∫

Vf

1
c2
F tF dV,

Cφ =
∑
ms

∫

Sσ

F tNw dS, Cc
φ = −

∑
mφ

∫

Vf

2U
c2

∂F t

∂x
F dV,

Aφ =
∑
ms

∫

Sσ

UF t ∂Nw

∂s
dS, Ac

φ =
∑
mφ

∫

Vf

M2 ∂F
t

∂s

∂F

∂s
dV.

Using the standard procedures of the finite- element method for Eq. (7) and taking into account Eq. (9),
we obtain the matrix relation

(Ks +Kg)d+Msd̈+ ρfC
t
φφ̇a + ρfAsφa = 0. (13)

Here Ks =
∑
ms

∫

Ss

BtDB dS, B is the coupling matrix of the strain vector ε∗ to the nodal displacement vector of

the shell finite element, Kg =
∑
ms

∫

Ss

Gtσ0GdS is the geometrical stiffness matrix, G is the coupling matrix of the

strains e to the nodal displacement vector, Ms =
∑
ms

∫

Vs

N tρmN dV , N is the matrix of the shape functions of the

shell finite element, and As =
∑
ms

∫

Sσ

UN t
w

∂F

∂s
dS.

The investigation of dynamic behavior of loaded shells of revolution with internal fluid flow reduces to the
joint solution of two systems of equations (12) and (13). The combined system of equations can be written as

K

{
d

φa

}
+M

{
d̈

φ̈a

}
+ ρfC

{
ḋ

φ̇a

}
+ ρfA

{
d

φa

}
= 0,

where K is the stiffness matrix, M is the mass matrix, C is the damping matrix, and A is the aerodynamic stiffness
matrix:

K =
[
Ks +Kg 0

0 −ρfKφ

]
, M =

[
Ms 0
0 −ρfMφ

]
,
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C =
[

0 Ct
φ

Cφ Cc
φ

]
, A =

[
0 As

Aφ Ac
φ

]
.

Writing the expressions for the perturbed motion of the shell and fluid as

d = q exp (i∗λt), φa = φ exp (i∗λt),

where q and φ are some functions of the coordinates; i∗ =
√−1 and λ = λ1 + i∗λ2 is the characteristic parameter,

we finally obtain

(K − λ2M + i∗λρfC + ρfA)
{
q

φ

}
= 0. (14)

The solution of the problem of the dynamic behavior of loaded shells of revolution filled with a fluid reduces
to the calculation and analysis of the eigenvalues λ of system (14). For a stationary fluid (A = Cc

φ = 0), the
eigenvalues of system (14) are real. For flow velocities U > 0, the eigenvalues of system (14) are complex or real,
depending on the boundary conditions for the shell. When the flow velocity in the shell–fluid system reaches certain
critical values, two types of instability are possible — static (divergence) and dynamic (flutter) — depending on
the boundary conditions for the shell. In the case of instability of the first type, one of the eigenvalues has zero real
part λ1. In the case of instability of the second type, two vibration modes merge and one of the eigenvalues has a
negative imaginary part λ2.

The complex eigenvalues of system (14) are calculated using the Muller method (the parabola method) [10].
To perform a numerical implementation of the problem, we used a semi-analytical version of the finite-

element method based on expanding the solution in a Fourier series in the circumferential coordinate θ. In this
case, the initial two-dimensional problem reduces to a set of one-dimensional problems for each harmonic of the
Fourier series.

For the shell, we used a finite element in the shape of a truncated cone with the meridional and circumferential
displacement vector components approximated by a linear polynomial and the normal components approximated by
a cubic polynomial. For the fluid, a triangular finite element with a linear approximation of the velocity perturbation
potential was used.

The calculations were performed using 40 elements for the shell and 25 elements (along the radius) for the
fluid, i.e., the total number of degrees of freedom was 718 (ignoring the boundary conditions).

3. Examples of Numerical Implementation. We consider vibrations of a conical shell (elastic modulus
E = 6.77 · 1010 N/m2, Poisson’s ratio ν = 0.29, ρm = 2648 kg/m3, R = 0.15 m, L = 0.56 m, h = 5.3 · 10−4 m,
and the cone angle is 15◦) rigidly fixed at both ends and filled with a stationary fluid. Table 1 gives the lowest
eigenfrequencies of vibrations f0 for various harmonic numbers j. The results obtain in the present work are in
good agreement with both numerical and experimental results (with an error not more than 2.5%) [11, 12].

Let us consider a rubber cylindrical shell rigidly fixed at two ends (u = v = w = ∂w/∂s = 0) and filled with a
moving gas treated as an incompressible medium. The calculations were performed for L/R = 25.9, h/R = 0.0227,
ρf/ρm = 0.001 36, j = 2, and ν = 0.5. Figure 1 gives a curve of the first four dimensionless frequencies ω = λ/U0

versus the dimensionless flow velocity Λ = U/U0, where U0 = {E/[ρm(1 − ν2)]}1/2 = 36.73.
Once flow velocity reaches the value ΛD = 0.601, static instability (divergence) occurs, and for ΛF = 0.625,

flutter arises. At higher velocities, divergence for the third and fourth vibration modes takes place. The calculations
results obtained in the present work are in good agreement with the results obtained in [13] using four terms of the
Galerkin expansion only for the first three frequencies.

The dynamic behavior of cylindrical shells of revolution containing fluid flows has been investigated in a
number of papers for various boundary conditions with the hydrostatic fluid pressure taken into account. It has
been found that in the case of bilateral simple support [2] or clamping [3], divergence-type instability occurs, and in
the case of a shell fixed at the end which is the entrance to the flow and free at the other end, flutter-type instability
with one degree of freedom takes place [3]. In addition, the possibility of aerodynamic damping at subcritical
velocities with asymmetric fastening of shells is discussed in [14, 15].

In the present work, we also performed calculations for a cylindrical shell under asymmetric boundary
conditions, in particular, for a shell simply supported at one end (v = w = 0 at x = 0) and rigidly fixed at the
other end. In this case, the parameters had the following values: ν = 0.3, L = 6.7, μ = ρfR/(ρmh) = 3.21,
k = h2/(12R2) = 1.51 · 10−7, and P = pR/(Eh) = 5.2 · 10−6.
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Fig. 1. Dimensionless eigenvalues ω versus dimensionless air flow velocity Λ for a rubber shell rigidly
fixed at two ends: the solid curves are the calculation results of the present work; the dashed curves
are the calculation results of [13].
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Fig. 2. Real (a) and imaginary (b) parts of the first two dimensionless eigenvalues versus dimensionless fluid
velocity Λ for a cylindrical shell simply supported at one end and rigidly fixed at the other end: the solid curves
are the calculation results of the present work; the dashed curves are the calculation results of [14].

318



bà

_8
2

3

4

5

6

_4 0 4

j=6

j=7

j=5

j=6

j=5

j=4

L.10-2

P .10-6 _8
1

2

3

4

5

_4 0 4

L.10-2

P .10-6

Fig. 3. Dimensionless critical divergence velocity Λ versus dimensionless static pressure P : (a) shell simply sup-
ported at one end face and rigidly fixed at the other end; (b) shell simply supported at both ends.
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Fig. 4. Real (a) and imaginary (b) parts of the first three dimensionless eigenvalues versus dimensionless fluid
velocity Λ for a cylindrical shell rigidly fixed at one ends and free at the other: the continuous curves are the
calculations results of the present work; the dashed curves are the calculation results of [14].
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TABLE 1

Eigenfrequencies of a Conical Shell Filled with an Incompressible Fluid
for Various Hydrostatic Pressures

j

f0, Hz

Calculation
results

of the present work

Calculation
results of [11]

Calculation
results of [12]

Experimental
data of [12]]

p = 0

3 100.86 96.34 101.0 100.0
4 78.70 75.50 78.7 76.0
5 63.55 61.07 63.6 —
6 54.23 53.22 54.4 —
7 50.52 50.12 50.8 51.0
8 52.24 52.14 52.8 54.0
9 58.20 58.21 — —

p = 0.1 atm

3 101.48 96.95 101.8 100.6
4 80.70 77.50 80.9 80.0
5 68.38 66.41 68.5 70.0
6 63.62 62.42 63.7 65.2
7 65.52 64.62 65.5 67.0
8 72.47 71.57 72.4 74.4
9 82.51 81.52 — —

p = 0.3 atm

3 102.70 98.14 103.0 101.0
4 84.53 81.33 84.7 83.7
5 77.08 75.03 77.2 79.0
6 78.97 77.44 78.8 80.7
7 87.73 86.18 87.3 89.2
8 100.61 98.82 99.7 102.8
9 115.60 113.60 — —

p = 0.5 atm

3 103.90 99.31 104.3 101.0
4 88.18 84.97 88.4 87.0
5 84.85 82.70 84.9 86.0
6 91.61 89.79 91.3 93.0
7 104.94 102.90 104.1 106.5
8 121.72 119.33 120.3 123.5
9 140.35 137.63 — —

Figure 2 shows curves of the first two dimensionless frequencies ω = λR/U0 [ω1 = Re (ω), ω2 = Im (ω), and
U0 = (E/ρm)1/2] versus dimensionless velocity Λ = U/U0 for j = 6. The real parts of the eigenvalues obtained
in the present work are in good agreement with the calculation results of [14]. In [14], aerodynamic damping
(in the subcritical region ω2 �= 0) was found to occur under asymmetric boundary conditions. The results of the
present work do not support the occurrence of aerodynamic damping in the range of subcritical velocities under
the symmetric and asymmetric boundary conditions considered.

To compare the boundaries of instability for shells under symmetric and asymmetric boundary conditions,
we studied the influence of static pressure on the dynamic characteristics of the system considered. Figure 3 shows
the behavior of shells under various boundary conditions. It is evident that the type of instability depends on the
pressure direction.

As noted above, for cantilever support of the shell, flutter-type instability with one degree of freedom occurs
and aerodynamic damping is observed at Λ > 0. In addition, in [14], it was found that for the first vibration mode
at ω1 = 0, two values ω2 > 0 exist. The calculations for P = 3.1 · 10−6 confirm the unusual dynamic behavior of
the shell–fluid system (Fig. 4). The indicated feature is also observed for other pressure values and in its absence.
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Fig. 5. Dimensionless critical flutter velocity Λ versus dimensionless static pressure P
for a shell rigidly fixed at one end and free at the other: the solid curves refer to
incompressible gas and the points refer to compressible gas.

The calculations for a cantilever supported shell show that the nature of instability depends significantly
on the static pressure and the direction of its action (Fig. 5). In this problem, we estimated the effect of the
gas compressibility (c/U0 = 0.0651) on the position and shape of the boundary of instability, which as shown
by the calculations, can be both stabilizing and destabilizing. In the case of critical harmonic numbers, the gas
compressibility has only a destabilizing effect. It should be noted that the most significant difference between
the results obtained taking into account and ignoring compressibility is observed only at high gas flow velocities
(M � 1).

Conclusions. The problem of the dynamic behavior of previously loaded shells of revolution containing
a stationary or moving compressible fluid was formulated mathematically, and a finite-element algorithm for its
numerical implementation was presented. The reliability of the algorithm was proved by a number of examples.
A series of calculations was performed to study the influence of boundary conditions, static pressure, and gas
compressibility on the dynamic behavior of the system modeled. A number of new data were obtained on the
nature of instability of shells interacting with an internal liquid (gas) flow.
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